

SWAT Detailed Report

All Findings - acc.i-talent.eu

2020-01-24

Report Information

Executive Summary

SWAT Application Summary

SWAT Application Details

Methodology

Activities

Explicit Exceptions

Purpose

OWASP Top 10 2017 Description

Common Vulnerability Scoring System (CVSS) v2 Description

Test case appendix - SWAT

Appendix 1

SWAT Report, 2020-01-24 © Copyright 2020 Outpost24 AB Page 1

Report Information

Report type SWAT Vulnerability
Report ID FE82C07A26763B77A7BB10AEF7AF0804
Date report was created 2020-01-24 16:38
Timezone for dates GMT+1
Report created for e-Progress
Report generated by Wouter Olde Weghuis
Report filtering Report has filtering active and this can result in a report with partial findings.

Fixed: No
Report template All Findings
Findings sorted by CVSS

SWAT Report, 2020-01-24 © Copyright 2020 Outpost24 AB Page 2

Executive Summary

Trend

Number of findings for each risk level between 2019-01-24 and 2020-01-24

OWASP Top 10

Risk Level Overview

High risk 0 findings
Medium risk 0 findings
Low risk 0 findings

A01 Injection
A02 Broken Authentication
A03 Sensitive Data Exposure
A04 XML External Entities (XXE)
A05 Broken Access Control
A06 Security Misconfiguration
A07 Cross-Site Scripting (XSS)
A08 Insecure Deserialization
A09 Using Components with Known Vulnerabilities
A10 Insufficient Logging&Monitoring

No issues
One or more issues

SWAT Report, 2020-01-24 © Copyright 2020 Outpost24 AB Page 3

SWAT Application Summary

acc.i-talent.eu

High risk 0
Medium risk 0
Low risk 0

Average CVSS score 0.0

OWASP Top 10

A01 Injection
A02 Broken Authentication
A03 Sensitive Data Exposure
A04 XML External Entities (XXE)
A05 Broken Access Control
A06 Security Misconfiguration
A07 Cross-Site Scripting (XSS)
A08 Insecure Deserialization
A09 Using Components with Known Vulnerabilities
A10 Insufficient Logging&Monitoring

No issues
One or more issues

SWAT Report, 2020-01-24 © Copyright 2020 Outpost24 AB Page 4

SWAT Application Details - acc.i-talent.eu

Component "Bootstrap 3.4.1" End-of-Life

Port 443/TCP - http
Finding Id 346517787
Description The detected version 3.4.1 of Bootstrap is no longer supported by the vendor, as it has reached

its end-of-life. This means that the component will (in addition to regular updates) not receive
any security patches from the vendor.

Right now there is no vulnerabilities associated with this version of Bootstrap, however as no
further updates will come to Bootstrap 3.x this may be a risk in the future.

For reference, please see:
https://github.com/twbs/release

Solution Upgrade Bootstrap to the latest secure version.

Category Not classified
Recreation Flow 1. Visit the following URL:

https://pentest.portal.acc.i-talent.eu

2. Review the response HTML source code, and note the following line:

<script type="text/javascript" src="/Scripts/dist/main.js?cacheVersion=1.24.0.79"></script>

3. This line includes an End-of-Life version of Bootstrap, which has known security issues
associated with it

Explanation Attackers may be able to stage attacks using known vulnerabilities in the component, as the
component will not receive any security updates.

Age 56.0 days - First detected: 2019-11-29 07:26
Last detected 2019-11-29 15:18
Script Id 2000106 - Added: 2017-01-02
Attachments Bootstrap_3.4.1.PNG See appendix 1.1

SWAT Report, 2020-01-24 © Copyright 2020 Outpost24 AB Page 5

Missing "X-XSS-Protection" Response Header

Port 443/TCP - http
Finding Id 346323645
Description The HTTP X-XSS-Protection response header is a feature of Internet Explorer, Chrome and

Safari that stops pages from loading when they detect reflected cross-site scripting (XSS)
attacks. Although these protections are largely unnecessary in modern browsers when sites
implement a strong Content-Security-Policy that disables the use of inline JavaScript ('unsafe-
inline'), they can still provide protection for users of older web browsers that do not yet support
CSP.

Note that Internet Explorer 8 (which is end-of-life) misinterprets this directive and becomes
more vulnerable should the header be set. As such, it might not always be the best idea to
enable it.

Solution Consider setting the 'X-XSS-Protection:' HTTP response header on all responses for browsers
that are not IE8.

Category Not classified
Recreation Flow 1. Navigate to the following URL:

https://pentest.performance.acc.i-talent.eu/not.found

2. Review the HTTP response headers:

HTTP/1.1 404 Not Found
Content-Type: text/html
Server: Microsoft-IIS/10.0
X-Powered-By: ASP.NET
Date: Thu, 28 Nov 2019 08:38:29 GMT
Connection: close
Content-Length: 1245

3. Note that the "X-XSS-Protection" header is not set
Explanation Without the "X-XSS-Protection" response header, XSS attacks may be successfully executed.
CWE CWE-16
WASC WASC-14
OWASP Top 10 2017 A06: Security Misconfiguration
OWASP Top 10 2013 A05: Security Misconfiguration
OWASP Top 10 2010 A06: Security Misconfiguration
OWASP Top 10 2004 A10: Insecure configuration Management
Age 57.0 days - First detected: 2019-11-28 07:18
Last detected 2019-11-29 07:18
Script Id 2000106 - Added: 2017-01-02

SWAT Report, 2020-01-24 © Copyright 2020 Outpost24 AB Page 6

http://cwe.mitre.org/data/definitions/16.html
http://projects.webappsec.org/Server-Misconfiguration
https://www.owasp.org/index.php/Top_10-2017_A6-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration

Missing "X-Content-Type-Options: nosniff" Response Header

Port 443/TCP - http
Finding Id 346323644
Description The X-Content-Type-Options response HTTP header is a marker used by the server to indicate

that the MIME types advertised in the Content-Type headers should not be changed and be
followed.
This enables one to opt-out of MIME type sniffing.

Solution Consider setting the 'X-Content-Type-Options: nosniff' HTTP response header on all responses.

Category Not classified
Recreation Flow 1. Navigate to the following URL:

https://pentest.performance.acc.i-talent.eu/not.found

2. Note the server HTTP response headers:

HTTP/1.1 404 Not Found
Content-Type: text/html
Server: Microsoft-IIS/10.0
X-Powered-By: ASP.NET
Date: Thu, 28 Nov 2019 08:38:29 GMT
Connection: close
Content-Length: 1245

3. Note that the "X-Content-Type-Options: nosniff" header is not set
Explanation An attacker could cause the web browser to interpret files as something else than declared by

the content type.
Age 57.0 days - First detected: 2019-11-28 07:18
Last detected 2019-11-29 07:18
Script Id 2000106 - Added: 2017-01-02

SWAT Report, 2020-01-24 © Copyright 2020 Outpost24 AB Page 7

HTTP Strict Transport Security not Configured

Port 443/TCP - http
Finding Id 346323643
Description The web application accepts connections over encrypted HTTPS, but it does not instruct the

client user agent to enforce HTTPS for future connections. This could by extension lead to that
a user either directly or inadvertently accesses the application over unencrypted HTTP - a
downgrade which could subsequently be exploited by an adjacent attacker.

For example, an attacker could trick the victim user agent to perform a request over HTTP, and
then intercept all non-Secure client cookies.

Implementing HSTS require careful consideration of the security/convenience implications, as it
would also prevent users from legitimately downgrading their connections. For reference,
please see: https://tools.ietf.org/html/rfc6797

Solution Set the "Strict-Transport-Security" HTTP response header on all HTTPS responses.

Category Not classified
Recreation Flow 1. Navigate to the following URL:

https://pentest.performance.acc.i-talent.eu

2. Inspect the server HTTP response headers, and note that the "Strict-Transport-Security"
HSTS header is not present

HTTP/1.1 302 Found
Cache-Control: private
Location: https://pentest.portal.acc.i-
talent.eu/Portal/Account/DoLogin?returnUrl=https%3a%2f%2fpentest.performance.acc.i-
talent.eu%2f
Server: Microsoft-IIS/10.0
X-AspNetMvc-Version: 5.2
X-AspNet-Version: 4.0.30319
X-Powered-By: ASP.NET
Date: Thu, 28 Nov 2019 08:35:42 GMT
Connection: close
Content-Length: 0

Explanation Inadvertently connecting once over an insecure connection could allow attackers to perform
Man-in-the-Middle-Attacks.

CWE CWE-311
CWE-523

WASC WASC-04
OWASP Top 10 2017 A03: Sensitive Data Exposure
OWASP Top 10 2013 A06: Sensitive Data Exposure
OWASP Top 10 2010 A09: Insufficient Transport Layer Protection
OWASP Top 10 2007 A09: Insecure Communications
Age 57.0 days - First detected: 2019-11-28 07:18
Last detected 2019-11-29 07:18
Script Id 2000106 - Added: 2017-01-02

SWAT Report, 2020-01-24 © Copyright 2020 Outpost24 AB Page 8

http://cwe.mitre.org/data/definitions/311.html
http://cwe.mitre.org/data/definitions/523.html
http://projects.webappsec.org/Insufficient-Transport-Layer-Protection
https://www.owasp.org/index.php/Top_10-2017_A3-Sensitive_Data_Exposure
https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure

Missing "X-XSS-Protection" Response Header

Port 443/TCP - http
Finding Id 346323637
Description The HTTP X-XSS-Protection response header is a feature of Internet Explorer, Chrome and

Safari that stops pages from loading when they detect reflected cross-site scripting (XSS)
attacks. Although these protections are largely unnecessary in modern browsers when sites
implement a strong Content-Security-Policy that disables the use of inline JavaScript ('unsafe-
inline'), they can still provide protection for users of older web browsers that do not yet support
CSP.

Note that Internet Explorer 8 (which is end-of-life) misinterprets this directive and becomes
more vulnerable should the header be set. As such, it might not always be the best idea to
enable it.

Solution Consider setting the 'X-XSS-Protection:' HTTP response header on all responses for browsers
that are not IE8.

Category Not classified
Recreation Flow 1. Navigate to the following URL:

https://pentest.portal.acc.i-talent.eu/Portal/Account/DoLogin?ReturnUrl=%2F

2. Review the HTTP response headers:

HTTP/1.1 200 OK
Cache-Control: no-cache, no-store, must-revalidate
Pragma: no-cache
Content-Type: text/html; charset=utf-8
Expires: -1
Vary: Accept-Encoding
Server: Microsoft-IIS/10.0
X-AspNetMvc-Version: 5.2
X-Frame-Options: SAMEORIGIN
X-AspNet-Version: 4.0.30319
X-Powered-By: ASP.NET
Date: Thu, 28 Nov 2019 06:28:32 GMT
Connection: close
Content-Length: 6218

3. Note that the "X-XSS-Protection" header is not set
Explanation Without the "X-XSS-Protection" response header, XSS attacks may be successfully executed.
CWE CWE-16
WASC WASC-14
OWASP Top 10 2017 A06: Security Misconfiguration
OWASP Top 10 2013 A05: Security Misconfiguration
OWASP Top 10 2010 A06: Security Misconfiguration
OWASP Top 10 2004 A10: Insecure configuration Management
Age 57.0 days - First detected: 2019-11-27 20:20
Last detected 2019-11-29 07:24
Script Id 2000106 - Added: 2017-01-02

SWAT Report, 2020-01-24 © Copyright 2020 Outpost24 AB Page 9

http://cwe.mitre.org/data/definitions/16.html
http://projects.webappsec.org/Server-Misconfiguration
https://www.owasp.org/index.php/Top_10-2017_A6-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration

Missing "X-Content-Type-Options: nosniff" Response Header

Port 443/TCP - http
Finding Id 346323294
Description The X-Content-Type-Options response HTTP header is a marker used by the server to indicate

that the MIME types advertised in the Content-Type headers should not be changed and be
followed.
This enables one to opt-out of MIME type sniffing.

Solution Consider setting the 'X-Content-Type-Options: nosniff' HTTP response header on all responses.

Category Not classified
Recreation Flow 1. Navigate to the following URL:

https://pentest.portal.acc.i-talent.eu/Portal/Account/DoLogin?ReturnUrl=%2F

2. Note the server HTTP response headers:

HTTP/1.1 200 OK
Cache-Control: no-cache, no-store, must-revalidate
Pragma: no-cache
Content-Type: text/html; charset=utf-8
Expires: -1
Vary: Accept-Encoding
Server: Microsoft-IIS/10.0
X-AspNetMvc-Version: 5.2
X-Frame-Options: SAMEORIGIN
X-AspNet-Version: 4.0.30319
X-Powered-By: ASP.NET
Date: Thu, 28 Nov 2019 06:28:32 GMT
Connection: close
Content-Length: 6218

3. Note that the "X-Content-Type-Options: nosniff" header is not set
Explanation An attacker could cause the web browser to interpret files as something else than declared by

the content type.
Age 57.0 days - First detected: 2019-11-27 20:20
Last detected 2019-11-29 07:24
Script Id 2000106 - Added: 2017-01-02

SWAT Report, 2020-01-24 © Copyright 2020 Outpost24 AB Page 10

HTTP Strict Transport Security not Configured

Port 443/TCP - http
Finding Id 346320318
Description The web application accepts connections over encrypted HTTPS, but it does not instruct the

client user agent to enforce HTTPS for future connections. This could by extension lead to that
a user either directly or inadvertently accesses the application over unencrypted HTTP - a
downgrade which could subsequently be exploited by an adjacent attacker.

For example, an attacker could trick the victim user agent to perform a request over HTTP, and
then intercept all non-Secure client cookies.

Implementing HSTS require careful consideration of the security/convenience implications, as it
would also prevent users from legitimately downgrading their connections. For reference,
please see: https://tools.ietf.org/html/rfc6797

Solution Set the "Strict-Transport-Security" HTTP response header on all HTTPS responses.

Category Not classified
Recreation Flow 1. Navigate to the following URL:

https://pentest.portal.acc.i-talent.eu/

2. Inspect the server HTTP response headers, and note that the "Strict-Transport-Security"
HSTS header is not present

HTTP/1.1 302 Found
Cache-Control: private
Location: https://pentest.portal.acc.i-talent.eu/Portal/Account/DoLogin?ReturnUrl=%2F
Server: Microsoft-IIS/10.0
X-AspNetMvc-Version: 5.2
X-AspNet-Version: 4.0.30319
X-Powered-By: ASP.NET
Date: Thu, 28 Nov 2019 06:28:31 GMT
Connection: close
Content-Length: 0

Explanation Inadvertently connecting once over an insecure connection could allow attackers to perform
Man-in-the-Middle-Attacks.

CWE CWE-311
CWE-523

WASC WASC-04
OWASP Top 10 2017 A03: Sensitive Data Exposure
OWASP Top 10 2013 A06: Sensitive Data Exposure
OWASP Top 10 2010 A09: Insufficient Transport Layer Protection
OWASP Top 10 2007 A09: Insecure Communications
Age 57.0 days - First detected: 2019-11-27 20:20
Last detected 2019-11-29 07:24
Script Id 2000106 - Added: 2017-01-02

SWAT Report, 2020-01-24 © Copyright 2020 Outpost24 AB Page 11

http://cwe.mitre.org/data/definitions/311.html
http://cwe.mitre.org/data/definitions/523.html
http://projects.webappsec.org/Insufficient-Transport-Layer-Protection
https://www.owasp.org/index.php/Top_10-2017_A3-Sensitive_Data_Exposure
https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure

Methodology

Approach

The manual components of the testing in based on the methodology set forth in the OWASP Testing Guide to the extent
where so is applicable, as well as takes influence in risk management guidelines as ISO27005, testing guidelines as
published by the PCI SSC in regards to testing of PCI DSS environments, the OSSTMM, and NIST publications on
penetration testing.

The scope is established, application content, behavior and context mapped, interactions identified and then subjected to
testing. Risks are noted and explored further.
All identified risks are scored according to business best practice using the Common Vulnerability Scoring System. When
known vulnerabilities are discovered, their reference and CVE-id are included in the reporting.

Each risk identified by an analyst or the supporting technical platforms and scanners is manually verified, recreated and
documented, including explanations of its impact and a recommendations in regards to problem resolution.

Scope and Vectors

The scope is defined as the targets of the tests. The locations of the tester and the routes from the tester to the scope is
defined as the vector. The scope was supplied by the customer and contains the application(s) to be tested.

Application

acc.i-talent.eu

The vector is shown below. The list was supplied by Outpost24 AB and contains the remote IP addresses which were used
during the test:

Vectors IP Addresses

Public Internet

SWAT Report, 2020-01-24 © Copyright 2020 Outpost24 AB Page 12

Activities

The following activities were executed during the testing:

Network and Application Scans Determining host, IP, route and location information of the network systems related to the
applications to be tested, as well as initial configuration of the continuous monitoring.

Component and Service Identification After the manners to communicate with the server are inventoried, it will be attempted to
identify which services, operating systems, patches and components are running on the targets
to be tested. Further it will be inspected if security devices or redundant systems can be
detected.

Vulnerability Research and Configuration Inspection The detected components will be checked against known vulnerabilities, problems, and
configuration issues.

Application Exploiting Testing will attempt to tamper/exploit the detected weaknesses. If such tests are expected to
endanger the confidentiality, integrity, or availability of data, then such testing may only occur in
consultation with the customer.

Analysis and Reporting The vulnerability information, evidence, and other data collected are analyzed and compiled into
the vulnerability report.

SWAT Report, 2020-01-24 © Copyright 2020 Outpost24 AB Page 13

Explicit Exceptions

The following tests were not executed during the testing:

Denial of Service Attacks The result of a denial of service attack might cause the application to cease normal behavior. Therefore, attacks of this
type will not be executed, unless explicitly requested by the customer.

Social Engineering In social engineering, an adversary attempts to gain access or otherwise manipulate an application by attacking the
people and employees with privileged access, e.g. by enticing them to divulge information.

Physical Security Physical security is the protection of personnel, hardware, programs, networks, and data from physical circumstances
and events that could cause serious loss or damage to an enterprise, agency, or institution.

SWAT Report, 2020-01-24 © Copyright 2020 Outpost24 AB Page 14

Purpose

Outpost24 AB has executed web application tests for the customer.

The objective of these tests was to get an impression about the information security of the web applications and the
environment. Based on the test results Outpost24 AB will compile a vulnerability report, and give recommendations for
improvements where applicable.

The end result will be that the customer will gain insight about the robustness and security of their applications.
Conclusions will be provided with clear suggestions for operational solutions and managerial focus, leading to heightened
IT security.

SWAT Report, 2020-01-24 © Copyright 2020 Outpost24 AB Page 15

OWASP Top 10 2017 Description

The OWASP Top Ten is a powerful awareness document for web application security, which represents a broad consensus
about what the most critical web application security flaws are.

A01 Injection Injection flaws, such as SQL, NoSQL, OS, and LDAP injection, occur when untrusted data is sent to an
interpreter as part of a command or query. The attacker's hostile data can trick the interpreter into
executing unintended commands or accessing data without proper authorization.

A02 Broken Authentication Application functions related to authentication and session management are often implemented
incorrectly, allowing attackers to compromise passwords, keys, or session tokens, or to exploit other
implementation flaws to assume other users' identities temporarily or permanently.

A03 Sensitive Data Exposure Many web applications and APIs do not properly protect sensitive data, such as financial, healthcare, and
PII. Attackers may steal or modify such weakly protected data to conduct credit card fraud, identity theft,
or other crimes. Sensitive data may be compromised without extra protection, such as encryption at rest
or in transit, and requires special precautions when exchanged with the browser.

A04 XML External Entities (XXE) Many older or poorly configured XML processors evaluate external entity references within XML
documents. External entities can be used to disclose internal files using the file URI handler, internal file
shares, internal port scanning, remote code execution, and denial of service attacks.

A05 Broken Access Control Restrictions on what authenticated users are allowed to do are often not properly enforced. Attackers
can exploit these flaws to access unauthorized functionality and/or data, such as access other users'
accounts, view sensitive files, modify other users' data, change access rights, etc.

A06 Security Misconfiguration Security misconfiguration is the most commonly seen issue. This is commonly a result of insecure default
configurations, incomplete or ad hoc configurations, open cloud storage, misconfigured HTTP headers,
and verbose error messages containing sensitive information. Not only must all operating systems,
frameworks, libraries, and applications be securely configured, but they must be patched/upgraded in a
timely fashion.

A07 Cross-Site Scripting (XSS) XSS flaws occur whenever an application includes untrusted data in a new web page without proper
validation or escaping, or updates an existing web page with user-supplied data using a browser API that
can create HTML or JavaScript. XSS allows attackers to execute scripts in the victim's browser which can
hijack user sessions, deface web sites, or redirect the user to malicious sites.

A08 Insecure Deserialization Insecure deserialization often leads to remote code execution. Even if deserialization flaws do not result
in remote code execution, they can be used to perform attacks, including replay attacks, injection
attacks, and privilege escalation attacks.

A09 Using Components with Known
Vulnerabilities

Components, such as libraries, frameworks, and other software modules, run with the same privileges as
the application. If a vulnerable component is exploited, such an attack can facilitate serious data loss or
server takeover. Applications and APIs using components with known vulnerabilities may undermine
application defenses and enable various attacks and impacts.

A10 Insufficient Logging&Monitoring Insufficient logging and monitoring, coupled with missing or ineffective integration with incident
response, allows attackers to further attack systems, maintain persistence, pivot to more systems, and
tamper, extract, or destroy data. Most breach studies show time to detect a breach is over 200 days,
typically detected by external parties rather than internal processes or monitoring.

SWAT Report, 2020-01-24 © Copyright 2020 Outpost24 AB Page 16

Common Vulnerability Scoring System (CVSS) v2 Description

The Common Vulnerability Scoring System (CVSS) is a free and open industry standard for assessing the severity of
computer system security vulnerabilities. CVSS attempts to assign severity scores to vulnerabilities, allowing responders to
prioritize responses and resources according to threat. Scores are calculated based on a formula that depends on several
metrics that approximate ease of exploit and the impact of exploit. Scores range from 0 to 10, with 10 being the most
severe. While many utilize only the CVSS Base score for determining severity, Temporal and Environmental scores also
exist, to factor in availability of mitigation and how widespread vulnerable systems are within an organization, respectively.

Access Complexity (AC)

Metric Value Description
High (H) Specialized access conditions exist. For example:

In most configurations, the attacking party must already have elevated privileges or spoof additional systems in addition to the
attacking system (e.g., DNS hijacking).
The attack depends on social engineering methods that would be easily detected by knowledgeable people. For example, the
victim must perform several suspicious or atypical actions.
The vulnerable configuration is seen very rarely in practice.

Medium (M) The access conditions are somewhat specialized; the following are examples:
The attacking party is limited to a group of systems or users at some level of authorization, possibly untrusted.
Some information must be gathered before a successful attack can be launched.
The affected configuration is non-default, and is not commonly configured (e.g., vulnerability present when a server performs user
account authentication via a specific scheme, but not present for another authentication scheme).
The attack requires a small amount of social engineering that might occasionally fool cautious users (e.g., phishing attacks that
modify a web browser's status bar to show a false link, having to be on someone's "buddy" list before sending an IM exploit).

Low (L) Specialized access conditions or extenuating circumstances do not exist. The following are examples:
The affected product typically requires access to a wide range of systems and users, possibly anonymous and untrusted (e.g.,
Internet-facing web or mail server).
The affected configuration is default or ubiquitous.
The attack can be performed manually and requires little skill or additional information gathering.
The "race condition" is a lazy one (i.e., it is technically a race but easily winnable).

Access Vector (AV)

Metric Value Description
Local (L) Vulnerability exploitable with only local access requires the attacker to have either physical access to the vulnerable system or a

local (shell) account. Examples of locally exploitable vulnerabilities are peripheral attacks such as Firewire/USB DMA attacks, and
local privilege escalations (e.g., sudo).

Adjacent Network (A) Vulnerability exploitable with adjacent network access requires the attacker to have access to either the broadcast or collision
domain of the vulnerable software. Examples of local networks include local IP subnet, Bluetooth, IEEE 802.11, and local Ethernet
segment.

Network (N) A vulnerability exploitable with network access means the vulnerable software is bound to the network stack and the attacker
does not require local network access or local access. Such vulnerability is often termed "remotely exploitable". An example of a
network attack is an RPC buffer overflow.

Authentication (Au)

Metric Value Description
Multiple (M) Exploiting the vulnerability requires that the attacker authenticate two or more times, even if the same credentials are used each

time. An example is an attacker authenticating to an operating system in addition to providing credentials to access an application
hosted on that system.

Single (S) One instance of authentication is required to access and exploit the vulnerability.
None (N) Authentication is not required to access and exploit the vulnerability.

Confidentiality Impact (C)

Metric Value Description
Partial (P) There is considerable informational disclosure. Access to some system files is possible, but the attacker does not have control

over what is obtained, or the scope of the loss is constrained. An example is a vulnerability that divulges only certain tables in a
database.

Complete (C) There is total information disclosure, resulting in all system files being revealed. The attacker is able to read all of the system's
data (memory, files, etc.)

None (N) There is no impact to the confidentiality of the system.

Integrity Impact (I)

Metric Value Description
Partial (P) Modification of some system files or information is possible, but the attacker does not have control over what can be modified, or

the scope of what the attacker can affect is limited. For example, system or application files may be overwritten or modified, but
either the attacker has no control over which files are affected or the attacker can modify files within only a limited context or
scope.

SWAT Report, 2020-01-24 © Copyright 2020 Outpost24 AB Page 17

Complete (C) There is a total compromise of system integrity. There is a complete loss of system protection, resulting in the entire system being
compromised. The attacker is able to modify any files on the target system.

None (N) There is no impact to the integrity of the system.

Availability Impact (A)

Metric Value Description
Partial (P) There is reduced performance or interruptions in resource availability. An example is a network-based flood attack that permits a

limited number of successful connections to an Internet service.
Complete (C) There is total information disclosure, resulting in all system files being revealed. The attacker is able to read all of the system's

data (memory, files, etc.)
None (N) There is no impact to the availability of the system.

SWAT Report, 2020-01-24 © Copyright 2020 Outpost24 AB Page 18

Test case appendix - SWAT

SWAT is a hybrid service delivery covering automated monitoring and web application scanning as well as at least quarterly

penetration testing, including application logics, of web applications under service.

The test-cases are oriented around the OWASP TESTING GUIDE, and for the application the following controls has been

performed. Note that a control will be marked as audited either if found present and audited, or were found not present

and hence not auditable - This to show that the application has been audited for this class of risks.

Test Activities and Descriptions OWASP testing guide Audit note

Information Gathering

4.2.1 Conduct Search Engine Discovery and Reconnaissance for Information
Leakage (OTG-INFO-001)

OTG-INFO-001 Not in scope

Search for: Not in scope
Network diagrams and configurations Not in scope
Archived posts and emails by administrators and other key staff Not in scope
Log on procedures and username formats Not in scope
Usernames and passwords Not in scope
Error message content Not in scope
Development, test, UAT and staging versions of the website Not in scope

4.2.2 Fingerprint Web Server (OTG-INFO-002) OTG-INFO-002 Audited
Determine web server software and (if possible) version Audited

4.2.3 Review Webserver Metafiles for Information Leakage (OTG-INFO-003) OTG-INFO-003 Audited
Locate the robots.txt file(s) and review their content Audited

4.2.4 Enumerate Applications on Webserver (OTG-INFO-004) OTG-INFO-004 Audited
Enumerate and identify all available applications Audited
Check each available web server for applications Audited
Create a list of possible virtual hosts and check if they are accepted as such
(DNS enumeration, rDNS, identify domains which map to the same IP) Not in scope

Check if applications are situated in a directory other than root by: Spider
server, Forceful browsing, Search engines, etc. Audited

4.2.5 Review Webpage Comments and Metadata for Information Leakage (OTG-
INFO-005)

OTG-INFO-005 Audited

Review all source comments and note useful information. Audited

4.2.6 Identify application entry points (OTG-INFO-006) OTG-INFO-006 Audited
Identify entry points / gates / input vectors: Audited
- Query (GET) parameters Audited
- Body parameters Audited
- Cookies Audited
- Request headers Audited
- REST-style parameters Audited
Review regular responses Audited
- Where are cookies set? Audited
- Does the application fail during normal operation (i.e. HTTP 500, 404) Audited
- Load balancers in place (might mean that exploits have to be repeated until
vulnerable back-end server is hit) Audited

SWAT Report, 2020-01-24 © Copyright 2020 Outpost24 AB Page 19

https://www.owasp.org/index.php/Testing_Information_Gathering
https://www.owasp.org/index.php/Conduct_search_engine_discovery/reconnaissance_for_information_leakage_(OTG-INFO-001)
https://www.owasp.org/index.php/Conduct_search_engine_discovery/reconnaissance_for_information_leakage_(OTG-INFO-001)
https://www.owasp.org/index.php/Fingerprint_Web_Server_(OTG-INFO-002)
https://www.owasp.org/index.php/Review_Webserver_Metafiles_for_Information_Leakage_(OTG-INFO-003)
https://www.owasp.org/index.php/Enumerate_Applications_on_Webserver_(OTG-INFO-004)
https://www.owasp.org/index.php/Review_webpage_comments_and_metadata_for_information_leakage_(OTG-INFO-005)
https://www.owasp.org/index.php/Review_webpage_comments_and_metadata_for_information_leakage_(OTG-INFO-005)
https://www.owasp.org/index.php/Identify_application_entry_points_(OTG-INFO-006)

4.2.7 Map execution paths through application (OTG-INFO-007) OTG-INFO-007 Audited
Map the application structure and paths Audited
Note what parts of the application might share server-side components and
code Audited

Note which parts might contain unique functionality Audited
Note which functionality might not be exposed Audited

4.2.8 Fingerprint Web Application Framework (OTG-INFO-008) OTG-INFO-008 Audited
For each identified web application, determine if it is based upon one or
multiple frameworks Audited

For each framework, determine the name and vendor, as well as the version Audited

4.2.9 Fingerprint Web Application (OTG-INFO-009) OTG-INFO-009 Audited
- For each identified web application, determine if the application is (or is based
upon) a standard application Audited

- Determine the name and vendor of the application, as well as the version Audited

4.2.10 Map Application Architecture (OTG-INFO-010) OTG-INFO-010 Audited
- Determine if any firewalls or web application firewalls are in place Audited
- Determine if a reverse proxy, cache, or load balancer is in use Audited
- Determine if there are multiple web servers handling requests Audited
- Determine the name, vendor, and version for each component or node Audited
- Draft a network topology map from the determined structure Audited
- Determine if URL rewrites can lead to cache poisoning – Not OTG testcase Audited

4.3 Configuration and Deployment Management Testing

4.3.1 Test Network/Infrastructure Configuration (OTG-CONFIG-001) OTG-CONFIG-001
- Leverage the map established in 4.2.10 Map Application Architecture and
check for known vulnerabilities Not in scope

- Determine the location of administrative interface and test for configuration
issues Audited

4.3.2 Test Application Platform Configuration (OTG-CONFIG-002) OTG-CONFIG-002 Audited
- Enumerate known files and directories, and determine if any platform-
provided components are vulnerable Audited

- Review source comments for useful information Audited
- Determine how error reporting is handled Audited

4.3.3 Test File Extensions Handling for Sensitive Information (OTG-CONFIG-003) OTG-CONFIG-003 Audited
- Assert how the web server presents files according to their file extension Audited
- Determine if any server-side code can be discovered by forceful browsing Audited
- Determine if file upload or file access restrictions based on file extensions can
be circumvented Audited

4.3.4 Review Old, Backup and Unreferenced Files for Sensitive Information
(OTG-CONFIG-004)

OTG-CONFIG-004 Audited

Attempt to reveal unreferenced files through: Audited
- Forceful browsing, "blind guessing" Audited
- Server misconfigurations or vulnerabilities (such as enabled directory listing,
or IIS short name) Audited

- Search engines and public information Audited
- File name bypass (using IIS short name to circumvent filter) Audited
- HTML (or other) source comments Audited
- Extrapolating from detected or derived naming schemes (e.g. "/2016/08" =>
"/2016/07") Audited

SWAT Report, 2020-01-24 © Copyright 2020 Outpost24 AB Page 20

https://www.owasp.org/index.php/Map_execution_paths_through_application_(OTG-INFO-007)
https://www.owasp.org/index.php/Fingerprint_Web_Application_Framework_(OTG-INFO-008)
https://www.owasp.org/index.php/Fingerprint_Web_Application_(OTG-INFO-009)
https://www.owasp.org/index.php/Map_Application_Architecture_(OTG-INFO-010)
https://www.owasp.org/index.php/Testing_for_configuration_management
https://www.owasp.org/index.php/Test_Network/Infrastructure_Configuration_(OTG-CONFIG-001)
https://www.owasp.org/index.php/Test_Application_Platform_Configuration_(OTG-CONFIG-002)
https://www.owasp.org/index.php/Test_File_Extensions_Handling_for_Sensitive_Information_(OTG-CONFIG-003)
https://www.owasp.org/index.php/Review_Old,_Backup_and_Unreferenced_Files_for_Sensitive_Information_(OTG-CONFIG-004)
https://www.owasp.org/index.php/Review_Old,_Backup_and_Unreferenced_Files_for_Sensitive_Information_(OTG-CONFIG-004)

4.3.5 Enumerate Infrastructure and Application Admin Interfaces (OTG-CONFIG-
005)

OTG-CONFIG-005 Audited

- Determine the location of available administrative interfaces Audited
- Determine whether or not the administrative interfaces performs proper
checks in regards to authentication and authorisation Audited

- Determine is default credentials are in use Audited

4.3.6 Test HTTP Methods (OTG-CONFIG-006) OTG-CONFIG-006 Audited
- Determine which HTTP methods are supported, and to what extent Audited
- Determine if TRACE is enabled (XST) Audited
- Determine if regular (such as HEAD) or arbitrary (such as ASDF) methods can
be used in order to bypass authorisation or cause other issues Audited

4.3.7 Test HTTP Strict Transport Security (OTG-CONFIG-007) OTG-CONFIG-007 Audited
- Determine if HSTS is properly configured for the application Audited
- Determine whether or not HSTS preloading is properly configured Audited

4.3.8 Test RIA cross domain policy (OTG-CONFIG-008) OTG-CONFIG-008 Audited
- Determine if crossdomain.xml and clientaccesspolicy.xml exists, and if so, if
they are properly set up Audited

4.4 Identity Management Testing

4.4.1 Test Role Definitions (OTG-IDENT-001) OTG-IDENT-001 Audited
- Map user roles and their intended permissions for various objects Audited
- Verify that user roles can not exceed their intended permissions Audited

4.4.2 Test User Registration Process (OTG-IDENT-002) OTG-IDENT-002 Audited
- Verify that the registration requirements are properly implemented and can
not be circumvented or altered Audited

- Verify that the registration process aligns with the business requirements Audited

4.4.3 Test Account Provisioning Process (OTG-IDENT-003) OTG-IDENT-003 Audited
Determine which accounts or user roles may create other accounts Audited
Determine if the account creation process aligns with business and security
requirements: Not in scope

Is there any verification, vetting and authorization of provisioning requests? Not in scope
Is there any verification, vetting and authorization of de-provisioning requests? Not in scope
Can an administrator provision other administrators or just users? Audited
Can an administrator or other user provision accounts with privileges greater
than their own? Audited

Can an administrator or user de-provision themselves? Audited
How are the files or resources owned by the de-provisioned user managed? Are
they deleted? Is access transferred? Not in scope

4.4.4 Testing for Account Enumeration and Guessable User Account (OTG-
IDENT-004)

OTG-IDENT-004 Audited

Determine if it is possible to enumerate user accounts: Audited
- Log in as known user with known password Audited
- Log in as known user with the wrong password Audited
- Log in as non-existing user with wrong password Audited
- Find other entry points accepting user name or user reference input and test
them as well, e.g. password reset Audited

4.4.5 Testing for Weak or unenforced username policy (OTG-IDENT-005) OTG-IDENT-005 Audited
- Determine whether or not there is a naming scheme in place for usernames Audited

SWAT Report, 2020-01-24 © Copyright 2020 Outpost24 AB Page 21

https://www.owasp.org/index.php/Enumerate_Infrastructure_and_Application_Admin_Interfaces_(OTG-CONFIG-005)
https://www.owasp.org/index.php/Enumerate_Infrastructure_and_Application_Admin_Interfaces_(OTG-CONFIG-005)
https://www.owasp.org/index.php/Test_HTTP_Methods_(OTG-CONFIG-006)
https://www.owasp.org/index.php/Test_HTTP_Strict_Transport_Security_(OTG-CONFIG-007)
https://www.owasp.org/index.php/Test_RIA_cross_domain_policy_(OTG-CONFIG-008)
https://www.owasp.org/index.php/Testing_Identity_Management
https://www.owasp.org/index.php/Test_Role_Definitions_(OTG-IDENT-001)
https://www.owasp.org/index.php/Test_User_Registration_Process_(OTG-IDENT-002)
https://www.owasp.org/index.php/Test_Account_Provisioning_Process_(OTG-IDENT-003)
https://www.owasp.org/index.php/Testing_for_Account_Enumeration_and_Guessable_User_Account_(OTG-IDENT-004)
https://www.owasp.org/index.php/Testing_for_Account_Enumeration_and_Guessable_User_Account_(OTG-IDENT-004)
https://www.owasp.org/index.php/Testing_for_Weak_or_unenforced_username_policy_(OTG-IDENT-005)

- Evaluate application response in regards to usernames following or breaking
the scheme Audited

4.5 Authentication Testing

4.5.1 Testing for Credentials Transported over an Encrypted Channel (OTG-
AUTHN-001)

OTG-AUTHN-001 Audited

- Assert whether or not all credentials are transmitted over an encrypted
channel Audited

- Test if credentials are accepted over plaintext connections Audited

4.5.2 Testing for default credentials (OTG-AUTHN-002) OTG-AUTHN-002 Audited
- Determine if access can be achieved using standard credentials Audited
- Determine if a common or guessable set of credentials are in use Audited
- Determine if a default or guessable password is set for new accounts Audited

4.5.3 Testing for Weak lock out mechanism (OTG-AUTHN-003) OTG-AUTHN-003 Audited
- Determine if password brute forcing is possible (lacking automation
protection) Audited

- Determine if there is an account lockout in place, and the boundaries
associated with it Audited

- Determine if the lockout can be circumvented Audited

4.5.4 Testing for bypassing authentication schema (OTG-AUTHN-004) OTG-AUTHN-004 Audited
Determine if authentication can be bypassed by: Audited
- Forced browsing, direct navigation Audited
- Parameter or cookie modification Audited
- Session token prediction Audited
- Injection vulnerabilities (such as SQLi) Audited

4.5.5 Test remember password functionality (OTG-AUTHN-005) OTG-AUTHN-005 Audited
Determine if there are any sensitive fields with autocomplete=on set Audited
Assert whether or not the application has a "remember me"-function. If so: Audited
- Determine how the feature is implemented and how it functions Audited
- Determine if any sensitive data is stored client-side (perhaps in a cookie) Audited
Verify that credentials are only sent when authenticating, not for each request Audited

4.5.6 Testing for Browser cache weakness (OTG-AUTHN-006) OTG-AUTHN-006 Audited
- Determine if user agents are allowed to store sensitive documents in the
history storage Audited

- Determine if user agents are allowed to cache sensitive documents Audited

4.5.7 Testing for Weak password policy (OTG-AUTHN-007) OTG-AUTHN-007 Audited
Determine the specifics of the in-use password policy Audited
Assert whether or not users are able to (if willing) create strong passwords
given the password policy Audited

Assert whether or not users are able to create weak passwords: Audited
- Character set requirements - what sets must be present? Audited
- Age requirements - how old can a password be? How often must it be
changed? Not in scope

- Change requirements - when can the password be changed? How often can it
be changed? Not in scope

- Reuse requirements - can old passwords be reused? How many old
passwords does the application keep track of? Not in scope

- Difference requirements - how different must two passwords be in order to be
accepted? Are any comparisons done at all? Not in scope

- Dictionary words - can dictionary words, or easily guessable strings such as
the username or first name be present in the new password? Audited

SWAT Report, 2020-01-24 © Copyright 2020 Outpost24 AB Page 22

https://www.owasp.org/index.php/Testing_for_authentication
https://www.owasp.org/index.php/Testing_for_Credentials_Transported_over_an_Encrypted_Channel_(OTG-AUTHN-001)
https://www.owasp.org/index.php/Testing_for_Credentials_Transported_over_an_Encrypted_Channel_(OTG-AUTHN-001)
https://www.owasp.org/index.php/Testing_for_default_credentials_(OTG-AUTHN-002)
https://www.owasp.org/index.php/Testing_for_Weak_lock_out_mechanism_(OTG-AUTHN-003)
https://www.owasp.org/index.php/Testing_for_Bypassing_Authentication_Schema_(OTG-AUTHN-004)
https://www.owasp.org/index.php/Testing_for_Vulnerable_Remember_Password_(OTG-AUTHN-005)
https://www.owasp.org/index.php/Testing_for_Browser_cache_weakness_(OTG-AUTHN-006)
https://www.owasp.org/index.php/Testing_for_Weak_password_policy_(OTG-AUTHN-007)

4.5.8 Testing for Weak security question/answer (OTG-AUTHN-008) OTG-AUTHN-008 Audited
Check whether or not answers to pre-generated security questions: Audited
- Can be known by family members or friends (e.g. date of birth) Audited
- Can easily be guessed (e.g. favourite colour) Audited
- Can be publicly discovered (e.g. favourite movie, listed on Facebook) Audited
Check whether or not self-generated questions can be weak ("What is 1 + 1?") Audited
Check whether or not secret question answer can be found by brute force Audited

4.5.9 Testing for weak password change or reset functionalities (OTG-AUTHN-
009)

OTG-AUTHN-009 Audited

- Determine if one user can change the password of another user (unless this is
expected, e.g. administrator) Audited

- Determine if existing password reset functionality can be leveraged to change
the password of other user accounts Audited

- Determine if the password reset functionality has any flaws, e.g. guessable
tokens Audited

- Determine whether or not the password change or reset functions can be
attacked via CSRF or similar vectors Audited

4.5.10 Testing for Weaker authentication in alternative channel (OTG-AUTHN-
010)

OTG-AUTHN-010 Audited

- Identify and understand the primary authentication method and channel Audited
- Identify other authentication channels and map their scope Audited
- Determine if the alternative channels undermine the primary channel Audited

4.6 Authorization Testing

4.6.1 Testing Directory traversal/file include (OTG-AUTHZ-001) OTG-AUTHZ-001 Audited
- From the list of entry points, determine which could potentially be used to
refer to local or remote resources Audited

- For these entry points, determine whether or not directory traversal or file
inclusion can occur Audited

4.6.2 Testing for bypassing authorization schema (OTG-AUTHZ-002) OTG-AUTHZ-002 Audited
For each unique role or privilege, assert whether or not: Audited
- It is possible to access a restricted resource without authorizing Audited
- It is possible to access a restricted resource after logging out Audited
- If is possible to access a restricted resource using an unauthorised account
(lacking the Tested privilege) Audited

Determine whether or not there are flaws in the administrative functionality,
using the same checks Audited

4.6.3 Testing for Privilege Escalation (OTG-AUTHZ-003) OTG-AUTHZ-003 Audited
- For all functionality associated with sessions, or specifically assigned
privileges, determine whether or not it is possible to access or modify it using
an unauthorised account

Audited

- Determine if the authorisation flaw can be used to escalate privileges Audited

4.6.4 Testing for Insecure Direct Object References (OTG-AUTHZ-004) OTG-AUTHZ-004 Audited
- Enumerate all object references exposed throughout the application Audited
- Determine if these references can be altered to access data not intended for
the current user Audited

4.7 Session Management Testing

4.7.1 Testing for Bypassing Session Management Schema (OTG-SESS-001) OTG-SESS-001 Audited
Enumerate all cookies set by the application, and determine: Audited

SWAT Report, 2020-01-24 © Copyright 2020 Outpost24 AB Page 23

https://www.owasp.org/index.php/Testing_for_Weak_security_question/answer_(OTG-AUTHN-008)
https://www.owasp.org/index.php/Testing_for_weak_password_change_or_reset_functionalities_(OTG-AUTHN-009)
https://www.owasp.org/index.php/Testing_for_weak_password_change_or_reset_functionalities_(OTG-AUTHN-009)
https://www.owasp.org/index.php/Testing_for_Weaker_authentication_in_alternative_channel_(OTG-AUTHN-010)
https://www.owasp.org/index.php/Testing_for_Weaker_authentication_in_alternative_channel_(OTG-AUTHN-010)
https://www.owasp.org/index.php/Testing_for_Authorization
https://www.owasp.org/index.php/Testing_Directory_traversal/file_include_(OTG-AUTHZ-001)
https://www.owasp.org/index.php/Testing_for_Bypassing_Authorization_Schema_(OTG-AUTHZ-002)
https://www.owasp.org/index.php/Testing_for_Privilege_escalation_(OTG-AUTHZ-003)
https://www.owasp.org/index.php/Testing_for_Insecure_Direct_Object_References_(OTG-AUTHZ-004)
https://www.owasp.org/index.php/Testing_for_Session_Management
https://www.owasp.org/index.php/Testing_for_Session_Management_Schema_(OTG-SESS-001)

- How many cookies are set? Audited
- Which cookies could have value to an attacker? Audited
- Which parts of the application generate or modify the cookies? Audited
- Which parts of the application requires cookies to be accessed? Audited
- Which subset of cookies are Tested? Which cookies can be discarded? Audited
- Whether or not the HTTPOnly and Secure flags are set for all cookies. Audited
- Whether or not cookies are (or can be) sent over an unencrypted channel. Audited
- Which cookies are temporary, and which are permanent Audited
- What HTTP/1.1 and HTTP/1.0 Cache-Control settings are used to protect
cookies Audited

Analysis: Audited
- Determine if sensitive data is exposed through the cookie Audited
- Determine if there is any obfuscation in place of the cookie name or value Audited
- Determine if there are any patterns to the cookie data structure Audited
- Are the Session IDs provably random in nature? Can the resulting values be
reproduced? Audited

- Do the same input conditions produce the same ID on a subsequent run? Audited
- Are the Session IDs provably resistant to statistical or cryptanalysis? Audited
- What elements of the Session IDs are time-linked? Audited
- What portions of the Session IDs are predictable? Audited
- Can the next ID be deduced, given full knowledge of the generation algorithm
and previous IDs? Audited

- Does the cookie have sufficient entropy and unpredictability? Audited
- Is the cookie tamper resistant? Will the application reject modified cookies? Audited
- Does the cookie expire within a sane time period? Audited
Determine if it is feasible to gain access to a valid cookie by brute force Audited

4.7.2 Testing for Cookies attributes (OTG-SESS-002) OTG-SESS-002 Audited
- Determine whether or not the cookie attributes (HTTPOnly, Secure, Domain,
Path) are properly set Audited

4.7.3 Testing for Session Fixation (OTG-SESS-003) OTG-SESS-003 Audited
- Determine whether or not a fresh session token (cookie) is set upon
successful authentication. Audited

4.7.4 Testing for Exposed Session Variables (OTG-SESS-004) OTG-SESS-004 Audited
Assert whether or not the session tokens (cookies) are always transmitted
securely Audited

Determine if new temporary tokens are generated for HTTP requests, or if
leaked tokens can be re-used Audited

Determine if the caching directives provide sufficient protection Audited
Determine if any credentials or session tokens are transmitted as query
parameter Audited

4.7.5 Testing for Cross Site Request Forgery (CSRF) (OTG-SESS-005) OTG-SESS-005 Audited
- For each unique request or function call, establish whether or not it can be
triggered via CSRF, and whether or not that has any impact Audited

4.7.6 Testing for logout functionality (OTG-SESS-006) OTG-SESS-006 Audited
- Determine if the application features a logout function Audited
- Determine if the logout function properly terminates the session client-side Audited
- Determine if the logout function properly terminates the session server-side Audited
- Determine whether or not inactive sessions are terminated after a certain
period of time Audited

- Assert whether or not it is possible to invalidate all user sessions (if multiple
sessions are allowed) Audited

- If SSO, determine if there is a single sign-off implemented Audited

SWAT Report, 2020-01-24 © Copyright 2020 Outpost24 AB Page 24

https://www.owasp.org/index.php/Testing_for_cookies_attributes_(OTG-SESS-002)
https://www.owasp.org/index.php/Testing_for_Session_Fixation_(OTG-SESS-003)
https://www.owasp.org/index.php/Testing_for_Exposed_Session_Variables_(OTG-SESS-004)
https://www.owasp.org/index.php/Testing_for_CSRF_(OTG-SESS-005)
https://www.owasp.org/index.php/Testing_for_logout_functionality_(OTG-SESS-006)

4.7.7 Test Session Timeout (OTG-SESS-007) OTG-SESS-007 Audited
- Determine whether or not an inactive session expires, and if so, the specific
duration Audited

- Assert if the session is invalidated by the client, by the server, or both Audited

4.7.8 Testing for Session puzzling (OTG-SESS-008) OTG-SESS-008 Audited
- Enumerate what session information is set where Audited
- Assert if it is possible to gain or escalate privileges by leveraging ("puzzling"
together) a partial session Audited

4.8 Input Validation Testing

4.8.1 Testing for Reflected Cross Site Scripting (OTG-INPVAL-001) OTG-INPVAL-001 Audited
- Identify and test entry points which have the potential to echo user input for
content and script injection issues Audited

4.8.2 Testing for Stored Cross Site Scripting (OTG-INPVAL-002) OTG-INPVAL-002 Audited
- Identify and test entry points which have the potential to echo user input for
content and script injection issues Audited

4.8.3 Testing for HTTP Verb Tampering (OTG-INPVAL-003) OTG-INPVAL-003 Audited
- Determine what HTTP methods are supported by the application Audited
- If methods other than GET+POST are accepted, determine whether or not
they are in use Audited

- Establish whether or not authentication and authorisation is properly
implemented for the non-standard HTTP methods Audited

4.8.4 Testing for HTTP Parameter pollution (OTG-INPVAL-004) OTG-INPVAL-004 Audited
- Determine if setting two parameters with identical name has any impact on
the server response or filter validation Audited

4.8.5 Testing for SQL Injection (OTG-INPVAL-005) OTG-INPVAL-005 Audited
- Identify and test entry points which have potential database interaction for
injection issues Audited

4.8.6 Testing for LDAP Injection (OTG-INPVAL-006) OTG-INPVAL-006 Audited
- Identify and test entry points which have potential LDAP interaction for
injection issues Audited

4.8.7 Testing for ORM Injection (OTG-INPVAL-007) OTG-INPVAL-007 Audited
- Identify and test entry points which have potential database interaction for
injection issues Audited

4.8.8 Testing for XML Injection (OTG-INPVAL-008) OTG-INPVAL-008 Audited
- Identify and test entry points which might be handled by XML parsers for
injection issues Audited

4.8.9 Testing for SSI Injection (OTG-INPVAL-009) OTG-INPVAL-009 Audited
- Identify and test entry points which have the potential to echo user input for
SSI injection issues Audited

4.8.10 Testing for XPath Injection (OTG-INPVAL-010) OTG-INPVAL-010 Audited
- Identify and test entry points which might be a part of an XPath expression for
injection issues Audited

4.8.11 IMAP/SMTP Injection (OTG-INPVAL-011) OTG-INPVAL-011 Audited
- Identify and test entry points that may (directly or indirectly) be used as
parameters related to email handling Audited

SWAT Report, 2020-01-24 © Copyright 2020 Outpost24 AB Page 25

https://www.owasp.org/index.php/Test_Session_Timeout_(OTG-SESS-007)
https://www.owasp.org/index.php/Testing_for_Session_puzzling_(OTG-SESS-008)
https://www.owasp.org/index.php/Testing_for_Input_Validation
https://www.owasp.org/index.php/Testing_for_Reflected_Cross_site_scripting_(OTG-INPVAL-001)
https://www.owasp.org/index.php/Testing_for_Stored_Cross_site_scripting_(OTG-INPVAL-002)
https://www.owasp.org/index.php/Testing_for_HTTP_Verb_Tampering_(OTG-INPVAL-003)
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004)
https://www.owasp.org/index.php/Testing_for_SQL_Injection_(OTG-INPVAL-005)
https://www.owasp.org/index.php/Testing_for_LDAP_Injection_(OTG-INPVAL-006)
https://www.owasp.org/index.php/Testing_for_ORM_Injection_(OTG-INPVAL-007)
https://www.owasp.org/index.php/Testing_for_XML_Injection_(OTG-INPVAL-008)
https://www.owasp.org/index.php/Testing_for_SSI_Injection_(OTG-INPVAL-009)
https://www.owasp.org/index.php/Testing_for_XPath_Injection_(OTG-INPVAL-010)
https://www.owasp.org/index.php/Testing_for_IMAP/SMTP_Injection_(OTG-INPVAL-011)

4.8.12 Testing for Code Injection (OTG-INPVAL-012) OTG-INPVAL-012 Audited
- Identify and test entry points which could potentially evaluate the input as
code or commands Audited

4.8.13 Testing for Command Injection (OTG-INPVAL-013) OTG-INPVAL-013 Audited
- Identify and test entry points which could potentially evaluate the input as
operating system commands Audited

4.8.14 Testing for Buffer overflow (OTG-INPVAL-014) OTG-INPVAL-014 Audited
- Determine whether or not heap and stack overflow can be achieved by
submitting larger input data than expected to entry points Audited

- Determine if format string expressions are evaluated Audited

4.8.15 Testing for incubated vulnerabilities (OTG-INPVAL-015) OTG-INPVAL-015 Audited
Identify controls that can be leveraged in order to stage a new attack, and
assert the possibility of doing so Audited

4.8.16 Testing for HTTP Splitting/Smuggling (OTG-INPVAL-016) OTG-INPVAL-016 Audited
- Assert if HTTP request splitting is possible by leveraging echoed values
present in the HTTP response header section Audited

- Assert if HTTP request smuggling is possible in the target environment Audited

4.8.17 Testing for HTTP Incoming Requests (OTG-INPVAL-017) OTG-INPVAL-017 Audited
- Review HTTP request/response interaction between the client and server Audited

4.9 Testing for Error Handling

4.9.1 Analysis of Error Codes (OTG-ERR-001) OTG-ERR-001 Audited
Review all error messages generated by activities Audited
Determine how the application responds to: Audited
- Resource not found or forbidden Audited
- Accessing application without credentials Audited
- Bad request Audited
- Methods not allowed, and methods not implemented Audited
- Request time-out Audited

4.9.2 Analysis of Stack Traces (OTG-ERR-002) OTG-ERR-002 Audited
Review all error messages generated by testing Audited
For all input vectors, establish application behaviour in regards to: Audited
- Invalid input Audited
- Input that contains non-alphanumeric characters Audited
- Empty inputs Audited
- Too long inputs Audited
- Accessing application in an unexpected way (bypassing regular flow) Audited

4.10 Testing for weak Cryptography

4.10.1 Testing for Weak SSL/TLS Ciphers, Insufficient Transport Layer
Protection (OTG-CRYPST-001)

OTG-CRYPST-001 Audited

- Determine if any sensitive (including credentials) data is transmitted in clear
text Audited

- Determine if any weak SSL/TLS ciphers are in use, and if any weak protocols
are in use Audited

- Assert whether or not BEAST, POODLE, HeartBleed, FREAK or CRIME is
applicable Audited

- Determine if the certificate is signed by a recognized CA Audited

SWAT Report, 2020-01-24 © Copyright 2020 Outpost24 AB Page 26

https://www.owasp.org/index.php/Testing_for_Code_Injection_(OTG-INPVAL-012)
https://www.owasp.org/index.php/Testing_for_Command_Injection_(OTG-INPVAL-013)
https://www.owasp.org/index.php/Testing_for_Buffer_Overflow_(OTG-INPVAL-014)
https://www.owasp.org/index.php/Testing_for_Incubated_Vulnerability_(OTG-INPVAL-015)
https://www.owasp.org/index.php/Testing_for_HTTP_Splitting/Smuggling_(OTG-INPVAL-016)
https://www.owasp.org/index.php/Testing_for_HTTP_Incoming_requests_(OTG-INPVAL-017)
https://www.owasp.org/index.php/Testing_for_Error_Handling
https://www.owasp.org/index.php/Testing_for_Error_Code_(OTG-ERR-001)
https://www.owasp.org/index.php/Testing_for_Stack_Traces_(OTG-ERR-002)
https://www.owasp.org/index.php/Testing_for_weak_Cryptography
https://www.owasp.org/index.php/Testing_for_Weak_SSL/TLS_Ciphers,_Insufficient_Transport_Layer_Protection_(OTG-CRYPST-001)
https://www.owasp.org/index.php/Testing_for_Weak_SSL/TLS_Ciphers,_Insufficient_Transport_Layer_Protection_(OTG-CRYPST-001)

- Determine if the certificate is valid Audited
- Determine if Surf Jacking and SSL Strip are applicable Audited

4.10.2 Testing for Padding Oracle (OTG-CRYPST-002) OTG-CRYPST-002 Audited
- Identify parameter values which may be encrypted, and determine whether or
not a padding oracle is present in the receiving implementation Audited

4.10.3 Testing for Sensitive information sent via unencrypted channels (OTG-
CRYPST-003)

OTG-CRYPST-003 Audited

- Determine if any sensitive (including credentials) data is transmitted in clear
text Audited

4.11 Business Logic Testing

4.11.1 Test Business Logic Data Validation (OTG-BUSLOGIC-001) OTG-BUSLOGIC-001 Audited
Determine how the application front-end and back-end validates data, and note
any discrepancies Audited

Identify what assumptions the application makes about decision-relevant data,
and determine if this can be leveraged Audited

4.11.2 Test Ability to Forge Requests (OTG-BUSLOGIC-002) OTG-BUSLOGIC-002 Audited
Attempt to enumerate functions and function-changing parameters by
guessing for predictable names and by using project/application
documentation

Audited

- Identify interesting function and parameter names Audited
Forge HTTP request to leverage these parameters and functions, and
determine if any impact can be established Audited

4.11.3 Test Integrity Checks (OTG-BUSLOGIC-003) OTG-BUSLOGIC-003 Audited
Identify controls that dynamically generate output based on some criteria, and
determine how the functionality or parameters presented differs Audited

- For each different parameter or function, determine the impact of unexpected
or unauthorised input or access Audited

Identify what data is accepted by the various components/functions, and
determine if the business logic aligns with this Audited

4.11.4 Test for Process Timing (OTG-BUSLOGIC-004) OTG-BUSLOGIC-004 Audited
Determine if there is a meaningful difference in response time between various
inputs, function calls, or results Audited

4.11.5 Test Number of Times a Function Can be Used Limits (OTG-BUSLOGIC-
005)

OTG-BUSLOGIC-005 Audited

- For each function with a call limit, determine if it is possible to circumvent the
limit Audited

- For each function with no limit, determine if the lack of restriction can result
in some form of impact Audited

4.11.6 Testing for the Circumvention of Work Flows (OTG-BUSLOGIC-006) OTG-BUSLOGIC-006 Audited
- Identify work flows and procedures within the application and determine if it is
possible to navigate non linearly or skip steps Audited

4.11.7 Test Defenses Against Application Mis-use (OTG-BUSLOGIC-007) OTG-BUSLOGIC-007 Audited
Determine how the application handles abuse of intended functionality: Audited
- Rejecting input containing certain characters Audited
- Locking out an account temporarily after a number of authentication failures Audited
- Forced browsing Audited
- Bypassing presentation layer input validation Audited
- Multiple access control errors Audited
- Additional, duplicated or missing parameter names Audited

SWAT Report, 2020-01-24 © Copyright 2020 Outpost24 AB Page 27

https://www.owasp.org/index.php/Testing_for_Padding_Oracle_(OTG-CRYPST-002)
https://www.owasp.org/index.php/Testing_for_Sensitive_information_sent_via_unencrypted_channels_(OTG-CRYPST-003)
https://www.owasp.org/index.php/Testing_for_Sensitive_information_sent_via_unencrypted_channels_(OTG-CRYPST-003)
https://www.owasp.org/index.php/Testing_for_business_logic
https://www.owasp.org/index.php/Test_business_logic_data_validation_(OTG-BUSLOGIC-001)
https://www.owasp.org/index.php/Test_Ability_to_forge_requests_(OTG-BUSLOGIC-002)
https://www.owasp.org/index.php/Test_integrity_checks_(OTG-BUSLOGIC-003)
https://www.owasp.org/index.php/Test_for_Process_Timing_(OTG-BUSLOGIC-004)
https://www.owasp.org/index.php/Test_number_of_times_a_function_can_be_used_limits_(OTG-BUSLOGIC-005)
https://www.owasp.org/index.php/Test_number_of_times_a_function_can_be_used_limits_(OTG-BUSLOGIC-005)
https://www.owasp.org/index.php/Testing_for_the_Circumvention_of_Work_Flows_(OTG-BUSLOGIC-006)
https://www.owasp.org/index.php/Test_defenses_against_application_mis-use_(OTG-BUSLOGIC-007)

- Multiple input validation or business logic verification failures with values that
cannot be the result user mistakes or typos Audited

- Structured data (e.g. JSPN, XML) of an invalid format is received Audited
- Blatant cross-site scripting or SQL injection payloads are received Audited
- Using the application faster than one could do manually Audited
- Change in continental geo-location of a user Audited
- Change of user agent Audited
- Accessing a multi-stage business process in the wrong order Audited
- Large number of, or high rate of use of, application-specific functionality (e.g.
voucher code submission, failed credit card payments, file uploads, file
downloads, log outs, etc).

Audited

4.11.8 Test Upload of Unexpected File Types (OTG-BUSLOGIC-008) OTG-BUSLOGIC-008 Audited
- For each file upload feature, determine whether or not only intended file types
can be uploaded (both for file name, and actual file type) Audited

4.11.9 Test Upload of Malicious Files (OTG-BUSLOGIC-009) OTG-BUSLOGIC-009 Audited
- Determine which file types should be considered malicious within the context
of the application Audited

- Upload the known "malicious" EICAR anti-malware test file and determine how
the application responds Audited

4.12 Client Side Testing

4.12.1 Testing for DOM based Cross Site Scripting (OTG-CLIENT-001) OTG-CLIENT-001 Audited
- Enumerate objects that supply or are used as input to JavaScript functions,
and determine if it is possible to cause attacker-supplied code to be evaluated Audited

4.12.2 Testing for JavaScript Execution (OTG-CLIENT-002) OTG-CLIENT-002 Audited
- Enumerate objects that supply or are used as input to JavaScript functions,
and determine if it is possible to cause attacker-supplied code to be evaluated Audited

4.12.3 Testing for HTML Injection (OTG-CLIENT-003) OTG-CLIENT-003 Audited
- Enumerate objects that supply or are used as input to JavaScript functions,
and determine if it is possible to inject HTML indistinguishable from site
content

Audited

4.12.4 Testing for Client Side URL Redirect (OTG-CLIENT-004) OTG-CLIENT-004 Audited
- Enumerate objects that supply or are used as input to JavaScript functions,
and determine if it is possible to redirect the user to an arbitrary destination Audited

4.12.5 Testing for CSS Injection (OTG-CLIENT-005) OTG-CLIENT-005 Audited
- Enumerate objects used as input to dynamically generate CSS, and determine
if it is possible to leverage the generation to cause an impact Audited

4.12.6 Testing for Client Side Resource Manipulation (OTG-CLIENT-006) OTG-CLIENT-006 Audited
Enumerate objects used to determine a URL, and assert whether or not this can
be modified to load arbitrary content into the page Audited

4.12.7 Test Cross Origin Resource Sharing (OTG-CLIENT-007) OTG-CLIENT-007 Audited
- Determine if the application implements proper behaviour in regards to CORS,
or if the policy in place is too permissive Audited

- Determine if XHR controls can be used to load arbitrary content by allowing
the scope origin in the CORS headers Audited

4.12.8 Testing for Cross Site Flashing (OTG-CLIENT-008) OTG-CLIENT-008 Audited
- Determine which parameters are passed to the flash object, and whether or
not they can be leveraged in order to inject code or alter the object logic Audited

- Determine whether or not the flash object loads remote flash objects, and
whether or not any arbitrary object can be loaded Audited

SWAT Report, 2020-01-24 © Copyright 2020 Outpost24 AB Page 28

https://www.owasp.org/index.php/Test_Upload_of_Unexpected_File_Types_(OTG-BUSLOGIC-008)
https://www.owasp.org/index.php/Test_Upload_of_Malicious_Files_(OTG-BUSLOGIC-009)
https://www.owasp.org/index.php/Client_Side_Testing
https://www.owasp.org/index.php/Testing_for_DOM-based_Cross_site_scripting_(OTG-CLIENT-001)
https://www.owasp.org/index.php/Testing_for_JavaScript_Execution_(OTG-CLIENT-002)
https://www.owasp.org/index.php/Testing_for_HTML_Injection_(OTG-CLIENT-003)
https://www.owasp.org/index.php/Testing_for_Client_Side_URL_Redirect_(OTG-CLIENT-004)
https://www.owasp.org/index.php/Testing_for_CSS_Injection_(OTG-CLIENT-005)
https://www.owasp.org/index.php/Testing_for_Client_Side_Resource_Manipulation_(OTG-CLIENT-006)
https://www.owasp.org/index.php/Test_Cross_Origin_Resource_Sharing_(OTG-CLIENT-007)
https://www.owasp.org/index.php/Testing_for_Cross_site_flashing_(OTG-CLIENT-008)

4.12.9 Testing for Clickjacking (OTG-CLIENT-009) OTG-CLIENT-009 Audited
- Determine if it is possible to frame the target application Audited
- Determine if a malicious impact can be caused by framing the application Audited

4.12.10 Testing WebSockets (OTG-CLIENT-010) OTG-CLIENT-010 Audited
- Determine whether or not WebSockets are in use Audited
- Determine if the origin is properly verified Audited
- Determine if the WS is secure Audited
- Determine if authentication is properly set up Audited
- Determine if proper authorisation is performed Audited
- Determine that proper input sanitisation is performed Audited

4.12.11 Test Web Messaging (OTG-CLIENT-011) OTG-CLIENT-011 Audited
- Determine if any event listeners for Cross Document Messaging are
implemented, and if they can be leveraged in order to cause an impact Audited

4.12.12 Test Local Storage (OTG-CLIENT-012) OTG-CLIENT-012 Audited
- Enumerate controls taking their input from either localStorage or
sessionStorage Audited

- Determine if an impact can be achieved by manipulating the storage Audited
- Determine if any sensitive data is stored in either localStorage or
sessionStorage Audited

SWAT Report, 2020-01-24 © Copyright 2020 Outpost24 AB Page 29

https://www.owasp.org/index.php/Testing_for_Clickjacking_(OTG-CLIENT-009)
https://www.owasp.org/index.php/Testing_WebSockets_(OTG-CLIENT-010)
https://www.owasp.org/index.php/Test_Web_Messaging_(OTG-CLIENT-011)
https://www.owasp.org/index.php/Test_Local_Storage_(OTG-CLIENT-012)

Appendix 1.1 - Bootstrap_3.4.1.PNG

SWAT Report, 2020-01-24 © Copyright 2020 Outpost24 AB Page 30

	SWAT Report
	Report Information
	Executive Summary
	SWAT Application Summary
	SWAT Application Details
	acc.i-talent.eu

	Methodology
	Activities
	Explicit Exceptions
	Purpose
	OWASP Top 10 2017 Description
	Common Vulnerability Scoring System (CVSS) v2 Description
	Test case appendix - SWAT
	Appendix 1
	1.1 - Bootstrap_3.4.1.PNG

